Whitepaper 'FinOps y gestión de costes para Kubernetes'
Considere darle a OptScale un Estrella en GitHub, es 100% de código abierto. Aumentaría su visibilidad ante los demás y aceleraría el desarrollo de productos. ¡Gracias!
Ebook 'De FinOps a estrategias comprobadas de gestión y optimización de costos en la nube'
menu icon
OptScale - FinOps
Descripción general de FinOps
Optimización de costos:
AWS
MS Azure
Nube de Google
Alibaba Cloud
Kubernetes
menu icon
OptScale - MLOps
Perfiles de ML/IA
Optimización de ML/IA
Perfilado de Big Data
PRECIOS DE ESCALA OPTICA
menu icon
Acura: migración a la nube
Descripción general
Cambio de plataforma de la base de datos
Migración a:
AWS
MS Azure
Nube de Google
Alibaba Cloud
VMware
OpenStack
KVM
Nube pública
Migración desde:
En la premisa
menu icon
Acura: recuperación ante desastres y respaldo en la nube
Descripción general
Migración a:
AWS
MS Azure
Nube de Google
Alibaba Cloud
VMware
OpenStack
KVM

Optimización de costos de ML

Mejore el proceso de creación de perfiles de ML/AI obteniendo un rendimiento óptimo y costos mínimos en la nube para experimentos de ML/AI
ML cost optimization-OptScale

Optimización RI/SP

RI-SP optimization OptScale

The RI/SP usage dashboard allows OptScale users to forecast guaranteed usage, utilize recommendations for better RI/SP utilization, and save a double-digit percentage of monthly cloud spend.

By integrating with an ML/AI model training process, OptScale highlights bottlenecks and offers clear recommendations to reach ML/AI performance optimization. 

The recommendations include utilizing Reserved/Spot instances and Savings Plans, which help minimize cloud costs for ML/AI experiments and development.

Strategically combining Savings Plans, Reserved Instances, and Spot Instances enables organizations to strike a balance between cost efficiency and flexibility, maximizing the value of machine learning processes.

Unused resource and bottleneck identification

unused resource and bottleneck identification OptScale

By integrated profiling, OptScale highlights bottlenecks of every experiment run and offers clear optimization recommendations to reach performance enhancement. The recommendations include utilizing Reserved/Spot Instances and Savings Plans, rightsizing and instance family migration, and detecting CPU/IO and IOPS inconsistencies caused by data transformations or model code inefficiencies.

Unused and overlooked resources are contributed to a company cloud bill, and users don’t even expect that they’re paying for them.

OptScale allows ML specialists to identify and clean up orphaned snapshots to keep cloud costs under control.

Power Schedules

power schedules OptScale

OptScale’s Power Schedules feature allows the scheduled shutdown of instances; users can automatically start and stop VMs to avoid the risk of human error and the burden of manual management.

With a single solution that works across multiple cloud platforms, customers have a consistent and streamlined experience, no matter where their resources are hosted.

Object storage optimization: S3 duplicate object finder

object-storage-optimization-OptScale

The Duplicate Object Finder for AWS S3 delivers significant cloud cost reduction by illuminating the duplicated objects.

The labyrinth of AWS S3 often houses duplicate objects, a silent menace that, over time, bloats cloud expenditures. OptScale scans and fishes out duplicates from a great number of S3 objects. Dispelling the constraints of singular account connectivity, OptScale’s Duplicate S3 Object Finder empowers users to link unlimited AWS cloud accounts.

VM Rightsizing: Optimal instance type and family selection

Choosing the optimal instance type and family involves selecting VMs from a cloud provider’s offerings that best meet the performance and cost requirements of your ML workloads. 

OptScale enables balancing performance needs with cost considerations by selecting instances that provide the required resources at the lowest cost.

By continuously monitoring, analyzing, and adjusting VM configurations based on workload requirements, OptScale enhances the performance of ML workflows while minimizing costs.

VM-rightsizing-OptScale

Gestión de costes de Databricks

databricks cost management OptScale

With OptScale, users Improve visibility and control over Databricks expenses and get details on which experiments the costs are distributed

Supporting Databricks by the OptScale platform allows ML specialists to identify how the Databricks costs are distributed across ML experiments and tasks. The connected Databricks data source is managed in the same way as other data sources.

OptScale captures metadata from Databricks resources, such as name, tags, and region, enabling effective cost allocation.

Instrumentación S3 y Redshift

With OptScale, users get the complete picture of S3 and Redshift API calls, usage, and cost for their ML model training or data engineering experiments. The platform provides users with metrics tracking and visualization, as well as performance and cost optimization recommendations.

S3 Redshift instrumentation OptScale

Plataformas soportadas

aws
MS Azure
google cloud platform
Alibaba Cloud
Kubernetes
databricks
PyTorch
kubeflow
TensorFlow
spark-apache

Noticias e informes

Plataforma de código abierto MLOps

Una descripción completa de OptScale como una plataforma de código abierto MLOps.

Mejore el proceso de ML en su empresa con Capacidades de OptScale, incluido

  • Tablas de clasificación de ML/IA
  • Seguimiento de experimentos
  • Ajuste de hiperparámetros
  • Versiones de modelos y conjuntos de datos
  • Optimización de los costos de la nube

Cómo utilizar OptScale para optimizar el uso de RI/SP para equipos de ML/AI

Descubra cómo: 

  • Mejore la utilización de RI/SP por parte de los equipos de ML/AI con OptScale
  • ver cobertura RI/SP
  • obtenga recomendaciones para el uso óptimo de RI/SP

Por qué es importante MLOps

Para cerrar la brecha entre el aprendizaje automático y las operaciones, en este artículo abordaremos lo siguiente:

  • Los factores impulsores de MLOps
  • Los problemas de superposición entre MLOps y DevOps
  • Los desafíos únicos de MLOps en comparación con DevOps
  • Las partes integrales de una estructura MLOps